Approximation and hardness results for the maximum edges in transitive closure problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F15%3A00087423" target="_blank" >RIV/00216224:14330/15:00087423 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-19315-1_2" target="_blank" >http://dx.doi.org/10.1007/978-3-319-19315-1_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-19315-1_2" target="_blank" >10.1007/978-3-319-19315-1_2</a>
Alternative languages
Result language
angličtina
Original language name
Approximation and hardness results for the maximum edges in transitive closure problem
Original language description
In this paper we study the following problem, named Maximum Edges in Transitive Closure, which has applications in computational biology. Given a simple, undirected graph G = (V,E) and a coloring of the vertices, remove a collection of edges from the graph such that each connected component is colorful (i.e., it does not contain two identically colored vertices) and the number of edges in the transitive closure of the graph is maximized. The problem is known to be APX-hard, and no approximation algorithms are known for it. We improve the hardness result by showing that the problem is NP-hard to approximate within a factor of |V |1/3-eps, for any constant eps > 0. Additionally, we show that the problem is APXhard already for the case when the numberof vertex colors equals 3. We complement these results by showing the first approximation algorithm for the problem, with approximation factor [formula presented]
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
25th International Workshop on Combinatorial Algorithms, IWOCA 2014, LNCS 8986
ISBN
9783319193144
ISSN
0302-9743
e-ISSN
—
Number of pages
11
Pages from-to
13-23
Publisher name
Springer
Place of publication
Duluth; United States
Event location
Duluth; United States
Event date
Jan 1, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—