All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Similarity Searching in Long Sequences of Motion Capture Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00088023" target="_blank" >RIV/00216224:14330/16:00088023 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-46759-7_21" target="_blank" >http://dx.doi.org/10.1007/978-3-319-46759-7_21</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-46759-7_21" target="_blank" >10.1007/978-3-319-46759-7_21</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Similarity Searching in Long Sequences of Motion Capture Data

  • Original language description

    Motion capture data digitally represent human movements by sequences of body configurations in time. Searching in such spatio-temporal data is difficult as query-relevant motions can vary in lengths and occur arbitrarily in the very long data sequence. There is also a strong requirement on effective similarity comparison as the specific motion can be performed by various actors in different ways, speeds or starting positions. To deal with these problems, we propose a new subsequence matching algorithm which uses a synergy of elastic similarity measure and multi-level segmentation. The idea is to generate a minimum number of overlapping data segments so that there is at least one segment matching an arbitrary subsequence. A non-partitioned query is then efficiently evaluated by searching for the most similar segments in a single level only, while guaranteeing a precise answer with respect to the similarity measure.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of 9th International Conference on Similarity Search and Applications (SISAP 2016), LNCS 9939

  • ISBN

    9783319467580

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    271-285

  • Publisher name

    Springer International Publishing AG

  • Place of publication

    Cham (ZG)

  • Event location

    Tokyo, Japan

  • Event date

    Jan 1, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article