All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

DGRMiner: Anomaly Detection and Explanation in Dynamic Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00091413" target="_blank" >RIV/00216224:14330/16:00091413 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-46349-0_27" target="_blank" >http://dx.doi.org/10.1007/978-3-319-46349-0_27</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-46349-0_27" target="_blank" >10.1007/978-3-319-46349-0_27</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    DGRMiner: Anomaly Detection and Explanation in Dynamic Graphs

  • Original language description

    Ubiquitous network data has given rise to diverse graph mining and analytical methods. One of the graph mining domains is anomaly detection in dynamic graphs, which can be employed for fraud detection, network intrusion detection, suspicious behaviour identification, etc. Most existing methods search for anomalies rather on the global level of the graphs. In this work, we propose a new anomaly detection and explanation algorithm for dynamic graphs. The algorithm searches for anomaly patterns in the form of predictive rules that enable us to examine the evolution of dynamic graphs on the level of subgraphs. Specifically, these patterns are able to capture addition and deletion of vertices and edges, and relabeling of vertices and edges. In addition, the algorithm outputs normal patterns that serve as an explanation for the anomaly patterns. The algorithm has been evaluated on two real-world datasets.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Data Analysis XV - 15th International Symposium, IDA 2016

  • ISBN

    9783319463483

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    308-319

  • Publisher name

    Springer

  • Place of publication

    Neuveden

  • Event location

    Stockholm, Sweden

  • Event date

    Oct 13, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article