All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Complexity Landscape of Connected f-Factor Problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00093949" target="_blank" >RIV/00216224:14330/16:00093949 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.41" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.41</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.41" target="_blank" >10.4230/LIPIcs.MFCS.2016.41</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Complexity Landscape of Connected f-Factor Problems

  • Original language description

    Given an n-vertex graph G and a function f:V(G) -&gt; {0, ..., n-1}, an f-factor is a subgraph H of G such that deg_H(v)=f(v) for every vertex v in V(G); we say that H is a connected f-factor if, in addition, the subgraph H is connected. A classical result of Tutte (1954) is the polynomial time algorithm to check whether a given graph has a specified f-factor. However, checking for the presence of a connected f-factor is easily seen to generalize Hamiltonian Cycle and hence is NP-complete. In fact, the Connected f-Factor problem remains NP-complete even when f(v) is at least n^epsilon for each vertex v and epsilon&lt;1; on the other side of the spectrum, the problem was known to be polynomial-time solvable when f(v) is at least n/3 for every vertex v. In this paper, we extend this line of work and obtain new complexity results based on restricting the function f.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, August 22-26

  • ISBN

    9783959770163

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    "41:1"-"41:14"

  • Publisher name

    Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik

  • Place of publication

    Germany

  • Event location

    Poland

  • Event date

    Jan 1, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article