On the Complexity Landscape of Connected f-Factor Problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00093949" target="_blank" >RIV/00216224:14330/16:00093949 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.41" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.41</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.41" target="_blank" >10.4230/LIPIcs.MFCS.2016.41</a>
Alternative languages
Result language
angličtina
Original language name
On the Complexity Landscape of Connected f-Factor Problems
Original language description
Given an n-vertex graph G and a function f:V(G) -> {0, ..., n-1}, an f-factor is a subgraph H of G such that deg_H(v)=f(v) for every vertex v in V(G); we say that H is a connected f-factor if, in addition, the subgraph H is connected. A classical result of Tutte (1954) is the polynomial time algorithm to check whether a given graph has a specified f-factor. However, checking for the presence of a connected f-factor is easily seen to generalize Hamiltonian Cycle and hence is NP-complete. In fact, the Connected f-Factor problem remains NP-complete even when f(v) is at least n^epsilon for each vertex v and epsilon<1; on the other side of the spectrum, the problem was known to be polynomial-time solvable when f(v) is at least n/3 for every vertex v. In this paper, we extend this line of work and obtain new complexity results based on restricting the function f.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, August 22-26
ISBN
9783959770163
ISSN
1868-8969
e-ISSN
—
Number of pages
14
Pages from-to
"41:1"-"41:14"
Publisher name
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
Place of publication
Germany
Event location
Poland
Event date
Jan 1, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—