Modeling Synonymy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00094426" target="_blank" >RIV/00216224:14330/17:00094426 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Modeling Synonymy
Original language description
Standard text retrieval methods underestimate the semantic similarity between documents that use synonymous terms. Latent semantic indexing (lsa) tackles the problem by clustering frequently co-occuring terms at the cost of the periodical reindexing of dynamic document collections and the suboptimality of cooccurences as a measure of synonymy. In this paper, I develop a term similarity model that suffers neither of these flaws. I analyze the associated computational complexity, show how the model can be implemented into existing ir systems, and evaluate its performance on the semantic text similarity task.
Czech name
—
Czech description
—
Classification
Type
V<sub>souhrn</sub> - Summary research report
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/TD03000295" target="_blank" >TD03000295: Intelligent software for semantic text search</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Number of pages
28
Place of publication
Brno
Publisher/client name
Technologická agentura České republiky
Version
—