All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cache and Priority Queue Based Approximation Technique for a Stream of Similarity Search Queries

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00095026" target="_blank" >RIV/00216224:14330/17:00095026 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-68474-1_2" target="_blank" >http://dx.doi.org/10.1007/978-3-319-68474-1_2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-68474-1_2" target="_blank" >10.1007/978-3-319-68474-1_2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cache and Priority Queue Based Approximation Technique for a Stream of Similarity Search Queries

  • Original language description

    Content-based similarity search techniques have been employed in a variety of today applications. In our work, we aim at the scenario when the similarity search is applied in the context of stream processing. In particular, there is a stream of query objects which need to be evaluated. Our goal is to be able to cope with the rate of incoming query objects (i.e., to reach sufficient throughput) and, at the same time, to preserve the quality of the obtained results at high levels. We propose an approximation technique for the similarity search which combines the probability of an indexed object to be a part of a query result and the time needed to examine the object. We are able to achieve better trade-off between the efficiency (processing time) and the quality (precision) of the similarity search compared to traditional priority queue based approximation techniques.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA16-18889S" target="_blank" >GA16-18889S: Big Data Analytics for Unstructured Data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Similarity Search and Applications : 10th International Conference, SISAP 2017, Munich, Germany, October 4-6, 2017, Proceedings

  • ISBN

    9783319684734

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    17

  • Pages from-to

    17-33

  • Publisher name

    Springer, Cham

  • Place of publication

    Cham

  • Event location

    Munich, Germany

  • Event date

    Oct 4, 2017

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article