Mean-Payoff Optimization in Continuous-Time Markov Chains with Parametric Alarms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00095081" target="_blank" >RIV/00216224:14330/17:00095081 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-66335-7_12" target="_blank" >http://dx.doi.org/10.1007/978-3-319-66335-7_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-66335-7_12" target="_blank" >10.1007/978-3-319-66335-7_12</a>
Alternative languages
Result language
angličtina
Original language name
Mean-Payoff Optimization in Continuous-Time Markov Chains with Parametric Alarms
Original language description
Continuous-time Markov chains with alarms (ACTMCs) allow for alarm events that can be non-exponentially distributed. Within parametric ACTMCs, the parameters of alarm-event distributions are not given explicitly and can be subject of parameter synthesis. An algorithm solving the epsilon-optimal parameter synthesis problem for parametric ACTMCs with long-run average optimization objectives is presented. Our approach is based on reduction of the problem to finding long-run average optimal strategies in semi-Markov decision processes (semi-MDPs) and sufficient discretization of parameter (i.e., action) space. Since the set of actions in the discretized semi-MDP can be very large, a straightforward approach based on explicit action-space construction fails to solve even simple instances of the problem. The presented algorithm uses an enhanced policy iteration on symbolic representations of the action space. The soundness of the algorithm is established for parametric ACTMCs with alarm-event distributions satisfying four mild assumptions that are shown to hold for uniform, Dirac, exponential, and Weibull distributions in particular, but are satisfied for many other distributions as well. An experimental implementation shows that the symbolic technique substantially improves the efficiency of the synthesis algorithm and allows to solve instances of realistic size.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA15-17564S" target="_blank" >GA15-17564S: Game Theory in Formal Analysis and Verification of Computer Systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Quantitative Evaluation of Systems
ISBN
9783319663340
ISSN
0302-9743
e-ISSN
—
Number of pages
17
Pages from-to
190-206
Publisher name
Springer
Place of publication
Cham
Event location
Berlin
Event date
Sep 5, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—