All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Interactive Exploration of Ligand Transportation through Protein Tunnels

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00095871" target="_blank" >RIV/00216224:14330/17:00095871 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1186/s12859-016-1448-0" target="_blank" >http://dx.doi.org/10.1186/s12859-016-1448-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s12859-016-1448-0" target="_blank" >10.1186/s12859-016-1448-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Interactive Exploration of Ligand Transportation through Protein Tunnels

  • Original language description

    Background: Protein structures and their interaction with ligands have been in the focus of biochemistry and structural biology research for decades. The transportation of ligand into the protein active site is often complex process, driven by geometric and physico-chemical properties, which renders the ligand path full of jitter and impasses. This prevents understanding of the ligand transportation and reasoning behind its behavior along the path. Results: To address the needs of the domain experts we design an explorative visualization solution based on a multi-scale simplification model. It helps to navigate the user to the most interesting parts of the ligand trajectory by exploring different attributes of the ligand and its movement, such as its distance to the active site, changes of amino acids lining the ligand, or ligand “stuckness”. The process is supported by three linked views – 3D representation of the simplified trajectory, scatterplot matrix, and bar charts with line representation of ligand-lining amino acids. Conclusions: The usage of our tool is demonstrated on molecular dynamics simulations provided by the domain experts. The tool was tested by the domain experts from protein engineering and the results confirm that it helps to navigate the user to the most interesting parts of the ligand trajectory and to understand the ligand behavior.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    BMC Bioinformatics

  • ISSN

    1471-2105

  • e-ISSN

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

    22

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    16

  • Pages from-to

    1-16

  • UT code for WoS article

    000397487000002

  • EID of the result in the Scopus database

    2-s2.0-85013756119