All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Going Beyond Primal Treewidth for {(M)ILP}

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00100547" target="_blank" >RIV/00216224:14330/17:00100547 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Going Beyond Primal Treewidth for {(M)ILP}

  • Original language description

    Integer Linear Programming (ILP) and its mixed variant (MILP) are archetypical examples of NP-complete optimization problems which have a wide range of applications in various areas of artificial intelligence. However, we still lack a thorough understanding of which structural restrictions make these problems tractable. Here we focus on structure captured via so-called decompositional parameters, which have been highly successful in fields such as boolean satisfiability and constraint satisfaction but have not yet reached their full potential in the ILP setting. In particular, primal treewidth (an established decompositional parameter) can only be algorithmically exploited to solve ILP under restricted circumstances. Our main contribution is the introduction and algorithmic exploitation of two new decompositional parameters for ILP and MILP. The first, torso-width, is specifically tailored to the linear programming setting and is the first decompositional parameter which can also be used for MILP. The latter, incidence treewidth, is a concept which originates from boolean satisfiability but has not yet been used in the ILP setting; here we obtain a full complexity landscape mapping the precise conditions under which incidence treewidth can be used to obtain efficient algorithms. Both of these parameters overcome previous shortcomings of primal treewidth for ILP in unique ways, and consequently push the frontiers of tractability for these important problems.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA

  • ISBN

    9781577357810

  • ISSN

    2374-3468

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    815-821

  • Publisher name

    AAAI

  • Place of publication

    USA

  • Event location

    San Francisco, USA

  • Event date

    Jan 1, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article