FO model checking of geometric graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00100734" target="_blank" >RIV/00216224:14330/18:00100734 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.19" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.19" target="_blank" >10.4230/LIPIcs.IPEC.2017.19</a>
Alternative languages
Result language
angličtina
Original language name
FO model checking of geometric graphs
Original language description
Over the past two decades the main focus of research into first-order (FO) model checking algorithms has been on sparse relational structures – culminating in the FPT algorithm by Grohe, Kreutzer and Siebertz for FO model checking of nowhere dense classes of graphs. On contrary to that, except the case of locally bounded clique-width only little is currently known about FO model checking of dense classes of graphs or other structures. We study the FO model checking problem for dense graph classes definable by geometric means (intersection and visibility graphs). We obtain new nontrivial FPT results, e.g., for restricted subclasses of circular-arc, circle, box, disk, and polygon-visibility graphs. These results use the FPT algorithm by Gajarský et al. for FO model checking of posets of bounded width. We also complement the tractability results by related hardness reductions.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA17-00837S" target="_blank" >GA17-00837S: Structural properties, parameterized tractability and hardness in combinatorial problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
12th International Symposium on Parameterized and Exact Computation (IPEC 2017)
ISBN
9783959770514
ISSN
1868-8969
e-ISSN
—
Number of pages
12
Pages from-to
„19:1-19:12“
Publisher name
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Place of publication
Dagstuhl
Event location
Vienna
Event date
Jan 1, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—