Bisimulation Invariant Monadic-Second Order Logic in the Finite
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00101061" target="_blank" >RIV/00216224:14330/18:00101061 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.117" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.117</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.117" target="_blank" >10.4230/LIPIcs.ICALP.2018.117</a>
Alternative languages
Result language
angličtina
Original language name
Bisimulation Invariant Monadic-Second Order Logic in the Finite
Original language description
We consider bisimulation-invariant monadic second-order logic over various classes of finite transition systems. We present several combinatorial characterisations of when the expressive power of this fragment coincides with that of the modal mu-calculus. Using these characterisations we prove for some simple classes of transition systems that this is indeed the case. In particular, we show that, over the class of all finite transition systems with Cantor-Bendixson rank at most k, bisimulation-invariant MSO coincides with L_mu.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA17-01035S" target="_blank" >GA17-01035S: Algebraic Language Theory for Infinite Trees</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic
ISBN
9783959770767
ISSN
1868-8969
e-ISSN
—
Number of pages
13
Pages from-to
1-13
Publisher name
Schloss Dagstuhl
Place of publication
Dagstuhl
Event location
Dagstuhl
Event date
Jan 1, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—