Conceptual Issues in Mastery Criteria: Differentiating Uncertainty and Degrees of Knowledge
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00104015" target="_blank" >RIV/00216224:14330/18:00104015 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-93843-1_33" target="_blank" >http://dx.doi.org/10.1007/978-3-319-93843-1_33</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-93843-1_33" target="_blank" >10.1007/978-3-319-93843-1_33</a>
Alternative languages
Result language
angličtina
Original language name
Conceptual Issues in Mastery Criteria: Differentiating Uncertainty and Degrees of Knowledge
Original language description
Mastery learning is a common personalization strategy in adaptive educational systems. A mastery criterion decides whether a learner should continue practice of a current topic or move to a more advanced topic. This decision is typically done based on comparison with a mastery threshold. We argue that the commonly used mastery criteria combine two different aspects of knowledge estimate in the comparison to this threshold: the degree of achieved knowledge and the uncertainty of the estimate. We propose a novel learner model that provides conceptually clear treatment of these two aspects. The model is a generalization of the commonly used Bayesian knowledge tracing and logistic models and thus also provides insight into the relationship of these two types of learner models. We compare the proposed mastery criterion to commonly used criteria and discuss consequences for practical development of educational systems.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Intelligence in Education
ISBN
9783319938424
ISSN
0302-9743
e-ISSN
—
Number of pages
12
Pages from-to
450-461
Publisher name
Springer
Place of publication
New York
Event location
London, United Kingdom
Event date
Jan 1, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—