All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Conceptual Issues in Mastery Criteria: Differentiating Uncertainty and Degrees of Knowledge

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00104015" target="_blank" >RIV/00216224:14330/18:00104015 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-93843-1_33" target="_blank" >http://dx.doi.org/10.1007/978-3-319-93843-1_33</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-93843-1_33" target="_blank" >10.1007/978-3-319-93843-1_33</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Conceptual Issues in Mastery Criteria: Differentiating Uncertainty and Degrees of Knowledge

  • Original language description

    Mastery learning is a common personalization strategy in adaptive educational systems. A mastery criterion decides whether a learner should continue practice of a current topic or move to a more advanced topic. This decision is typically done based on comparison with a mastery threshold. We argue that the commonly used mastery criteria combine two different aspects of knowledge estimate in the comparison to this threshold: the degree of achieved knowledge and the uncertainty of the estimate. We propose a novel learner model that provides conceptually clear treatment of these two aspects. The model is a generalization of the commonly used Bayesian knowledge tracing and logistic models and thus also provides insight into the relationship of these two types of learner models. We compare the proposed mastery criterion to commonly used criteria and discuss consequences for practical development of educational systems.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Intelligence in Education

  • ISBN

    9783319938424

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    450-461

  • Publisher name

    Springer

  • Place of publication

    New York

  • Event location

    London, United Kingdom

  • Event date

    Jan 1, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article