Performing Feature Selection Before Removing Outliers To Increase Classfier's Accuracy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00106777" target="_blank" >RIV/00216224:14330/18:00106777 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Performing Feature Selection Before Removing Outliers To Increase Classfier's Accuracy
Original language description
This work addresses the problem of feature selection for boosting the performance of outlier detectors in the context of supervised classification. Different feature selection and outlier detection methods are applied to four datasets used in the experiment and a comparative analysis between combinations of these methods is reported. We present combinations producing the best accuracy of a classifier and show the optimal number of outliers to be removed.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
DATA A ZNALOSTI & WIKT 2018, sborník konference
ISBN
9788021456792
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
77-82
Publisher name
VUT Brno
Place of publication
Brno
Event location
Brno
Event date
Jan 1, 2018
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—