Perspectives of Big Data Quality in Smart Service Ecosystem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00111068" target="_blank" >RIV/00216224:14330/18:00111068 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.22059/JITM.2019.72763" target="_blank" >http://dx.doi.org/10.22059/JITM.2019.72763</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22059/JITM.2019.72763" target="_blank" >10.22059/JITM.2019.72763</a>
Alternative languages
Result language
angličtina
Original language name
Perspectives of Big Data Quality in Smart Service Ecosystem
Original language description
Despite the increasing importance of data and information quality, current research related to Big Data quality is still limited. It is particularly unknown how to apply previous data quality models to Big Data. In this paper we review Big Data quality research from several perspectives and apply a known quality model with its elements of conformance to specification and design in the context of Big Data. Furthermore, we extend this model and demonstrate it utility by analyzing the impact of three Big Data characteristics such as volume, velocity and variety in the context of smart cities. This paper intends to build a foundation for further empirical research to understand Big Data quality and its implications in the design and execution of smart service ecosystems.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Information Technology Management
ISSN
2008-5893
e-ISSN
2423-5059
Volume of the periodical
10
Issue of the periodical within the volume
4
Country of publishing house
IR - IRAN, ISLAMIC REPUBLIC OF
Number of pages
12
Pages from-to
72-83
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85072581832