All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

DIC Image Segmentation of Dense Cell Populations by Combining Deep Learning and Watershed

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00107237" target="_blank" >RIV/00216224:14330/19:00107237 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ISBI.2019.8759594" target="_blank" >http://dx.doi.org/10.1109/ISBI.2019.8759594</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ISBI.2019.8759594" target="_blank" >10.1109/ISBI.2019.8759594</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    DIC Image Segmentation of Dense Cell Populations by Combining Deep Learning and Watershed

  • Original language description

    Image segmentation of dense cell populations acquired using label-free optical microscopy techniques is a challenging problem. In this paper, we propose a novel approach based on a combination of deep learning and watershed transform to segment differential interference contrast (DIC) images with high accuracy. The main idea of our approach is to train a convolutional neural network to detect both cellular markers and cellular areas and based on these predictions to split the individual cells by using the watershed transform. The approach was developed based on the images of dense HeLa cell populations included in the Cell Tracking Challenge database. Our approach was ranked the best in segmentation, detection, as well as the overall performance as evaluated on the challenge datasets.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/GA17-05048S" target="_blank" >GA17-05048S: Multi-modal live cell image segmentation and tracking</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IEEE 16th International Symposium on Biomedical Imaging

  • ISBN

    9781538636411

  • ISSN

    1945-7928

  • e-ISSN

    1945-8452

  • Number of pages

    4

  • Pages from-to

    236-239

  • Publisher name

    IEEE 16th International Symposium on Biomedical Imaging

  • Place of publication

    Venice, Italy, Italy

  • Event location

    Venice, Italy, Italy

  • Event date

    Jan 1, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000485040000055