All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Examining PBKDF2 security margin - Case study of LUKS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00107341" target="_blank" >RIV/00216224:14330/19:00107341 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jisa.2019.03.016" target="_blank" >http://dx.doi.org/10.1016/j.jisa.2019.03.016</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jisa.2019.03.016" target="_blank" >10.1016/j.jisa.2019.03.016</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Examining PBKDF2 security margin - Case study of LUKS

  • Original language description

    Passwords are widely used to protect our sensitive information or to gain access to specific resources. They should be changed frequently and be strong enough to prevent well-known attacks. Unfortunately, user-chosen passwords are usually short and lack sufficient entropy. A possible solution to these problems is to adopt a Key Derivation Function (KDF) that allows legitimate users to spend a moderate amount of time on key derivation, while imposing CPU/memory-intensive operations on the attacker side. In this paper, we focus on long-term passwords secured by the Password-Based Key Derivation Function 2 (PBKDF2) and present the case study of Linux Unified Key Setup (LUKS), a disk-encryption specification commonly implemented in Linux based operating systems. In particular, we describe how LUKS protects long-term keys by means of iteration counts defined at runtime, and analyze how external factors may affect the iteration counts computation. In doing so, we provide means of evaluating the iteration count values defined at run-time and experimentally show to what level PBKDF2 is still capable of providing sufficient security margin for a LUKS implementation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Information Security and Applications

  • ISSN

    2214-2126

  • e-ISSN

  • Volume of the periodical

    46

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    296-306

  • UT code for WoS article

    000467422300024

  • EID of the result in the Scopus database