Bounded degree conjecture holds precisely for c-crossing-critical graphs with c<=12
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00108275" target="_blank" >RIV/00216224:14330/19:00108275 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2019.14" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.SoCG.2019.14</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2019.14" target="_blank" >10.4230/LIPIcs.SoCG.2019.14</a>
Alternative languages
Result language
angličtina
Original language name
Bounded degree conjecture holds precisely for c-crossing-critical graphs with c<=12
Original language description
We study c-crossing-critical graphs, which are the minimal graphs that require at least c edge-crossings when drawn in the plane. For every fixed pair of integers with c >= 13 and d >= 1, we give first explicit constructions of c-crossing-critical graphs containing a vertex of degree greater than d. We also show that such unbounded degree constructions do not exist for c <=12, precisely, that there exists a constant D such that every c-crossing-critical graph with c <=12 has maximum degree at most D. Hence, the bounded maximum degree conjecture of c-crossing-critical graphs, which was generally disproved in 2010 by Dvorák and Mohar (without an explicit construction), holds true, surprisingly, exactly for the values c <=12.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA17-00837S" target="_blank" >GA17-00837S: Structural properties, parameterized tractability and hardness in combinatorial problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
35th International Symposium on Computational Geometry, SoCG 2019
ISBN
9783959771047
ISSN
1868-8969
e-ISSN
—
Number of pages
15
Pages from-to
„14:1-14:15“
Publisher name
Leibniz International Proceedings in Informatics, LIPIcs
Place of publication
Dagstuhl
Event location
Portland, OR, USA
Event date
Jun 18, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—