All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Data-Informed Parameter Synthesis for Population Markov Chains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00108287" target="_blank" >RIV/00216224:14330/19:00108287 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-28042-0_10" target="_blank" >http://dx.doi.org/10.1007/978-3-030-28042-0_10</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-28042-0_10" target="_blank" >10.1007/978-3-030-28042-0_10</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Data-Informed Parameter Synthesis for Population Markov Chains

  • Original language description

    Stochastic population models are widely used to model phenomena in different areas such as chemical kinetics or collective animal behaviour. Quantitative analysis of stochastic population models easily becomes challenging, due to the combinatorial propagation of dependencies across the population. The complexity becomes especially prominent when model's parameters are not known and available measurements are limited. In this paper, we illustrate this challenge in a concrete scenario: we assume a simple communication scheme among identical individuals, inspired by how social honeybees emit the alarm pheromone to protect the colony in case of danger. Together, n individuals induce a population Markov chain with n parameters. In addition, we assume to be able to experimentally observe the states only after the steady-state is reached. In order to obtain the parameters of the individual's behaviour, by utilising the data measurements for population, we combine two existing techniques. First, we use the tools for parameter synthesis for Markov chains with respect to temporal logic properties, and then we employ CEGAR-like reasoning to find the viable parameter space up to desired coverage. We report the performance on a number of synthetic data sets.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/GA18-00178S" target="_blank" >GA18-00178S: Discrete Bifurcation Analysis of Reactive Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Hybrid Systems Biology (HSB 2019)

  • ISBN

    9783030280413

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    18

  • Pages from-to

    147-164

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Charles University

  • Event date

    Apr 6, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000509932800010