Data-Informed Parameter Synthesis for Population Markov Chains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00108287" target="_blank" >RIV/00216224:14330/19:00108287 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-28042-0_10" target="_blank" >http://dx.doi.org/10.1007/978-3-030-28042-0_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-28042-0_10" target="_blank" >10.1007/978-3-030-28042-0_10</a>
Alternative languages
Result language
angličtina
Original language name
Data-Informed Parameter Synthesis for Population Markov Chains
Original language description
Stochastic population models are widely used to model phenomena in different areas such as chemical kinetics or collective animal behaviour. Quantitative analysis of stochastic population models easily becomes challenging, due to the combinatorial propagation of dependencies across the population. The complexity becomes especially prominent when model's parameters are not known and available measurements are limited. In this paper, we illustrate this challenge in a concrete scenario: we assume a simple communication scheme among identical individuals, inspired by how social honeybees emit the alarm pheromone to protect the colony in case of danger. Together, n individuals induce a population Markov chain with n parameters. In addition, we assume to be able to experimentally observe the states only after the steady-state is reached. In order to obtain the parameters of the individual's behaviour, by utilising the data measurements for population, we combine two existing techniques. First, we use the tools for parameter synthesis for Markov chains with respect to temporal logic properties, and then we employ CEGAR-like reasoning to find the viable parameter space up to desired coverage. We report the performance on a number of synthetic data sets.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
<a href="/en/project/GA18-00178S" target="_blank" >GA18-00178S: Discrete Bifurcation Analysis of Reactive Systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Hybrid Systems Biology (HSB 2019)
ISBN
9783030280413
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
18
Pages from-to
147-164
Publisher name
Springer International Publishing
Place of publication
Cham
Event location
Charles University
Event date
Apr 6, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000509932800010