All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multimodal Point Distribution Model for Anthropological Landmark Detection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00110475" target="_blank" >RIV/00216224:14330/19:00110475 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ICIP.2019.8803252" target="_blank" >http://dx.doi.org/10.1109/ICIP.2019.8803252</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICIP.2019.8803252" target="_blank" >10.1109/ICIP.2019.8803252</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multimodal Point Distribution Model for Anthropological Landmark Detection

  • Original language description

    While current landmark detection algorithms offer a good approximation of the landmark locations, they are often unsuitable for the use in biological research. We present multimodal landmark detection approach, based on Point distribution model that detects a larger number of anthropologically relevant landmarks than the current landmark detection algorithms. At the same time we show that improving detection accuracy of initial vertices, using image information, to which the Point distribution model is fitted, increases both the overall accuracy and the stability of the detected landmarks. We show results on data from the public FIDENTIS Database, created for the anthropological research, and compare them to the state-of-the-art landmark detection algorithms that are based on statistical shape models.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    26th IEEE International Conference on Image Processing (ICIP2019)

  • ISBN

    9781538662496

  • ISSN

    1522-4880

  • e-ISSN

    2381-8549

  • Number of pages

    5

  • Pages from-to

    2986-2990

  • Publisher name

    Springer

  • Place of publication

    Taipei, Taiwan

  • Event location

    Taipei, Taiwan

  • Event date

    Jan 1, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000521828603020