All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Improving RNN-based Answer Selection for Morphologically Rich Languages

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00114091" target="_blank" >RIV/00216224:14330/20:00114091 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.5220/0008979206440651" target="_blank" >http://dx.doi.org/10.5220/0008979206440651</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5220/0008979206440651" target="_blank" >10.5220/0008979206440651</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Improving RNN-based Answer Selection for Morphologically Rich Languages

  • Original language description

    Question answering systems have improved greatly during the last five years by employing architectures of deep neural networks such as attentive recurrent networks or transformer-based networks with pretrained con- textual information. In this paper, we present the results and detailed analysis of experiments with the largest question answering benchmark dataset for the Czech language. The best results evaluated in the text reach the accuracy of 72 %, which is a 4 % improvement to the previous best result. We also introduce the newest version of the Czech Question Answering benchmark dataset SQAD 3.0, which was substantially extended to more than 13,000 question-answer pairs, and we report the first answer selection results on this dataset which indicate that the size of the training data is important for the task.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/GA18-23891S" target="_blank" >GA18-23891S: Hyperintensional Reasoning over Natural Language Texts</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 12th International Conference on Agents and Artificial Intelligence

  • ISBN

    9789897583957

  • ISSN

    2184-433X

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    644-651

  • Publisher name

    SCITEPRESS

  • Place of publication

    Portugal

  • Event location

    Portugal

  • Event date

    Jan 1, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000570769000069