Regular Tree Algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00114228" target="_blank" >RIV/00216224:14330/20:00114228 - isvavai.cz</a>
Result on the web
<a href="https://lmcs.episciences.org/6101" target="_blank" >https://lmcs.episciences.org/6101</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23638/LMCS-16(1:16)2020" target="_blank" >10.23638/LMCS-16(1:16)2020</a>
Alternative languages
Result language
angličtina
Original language name
Regular Tree Algebras
Original language description
We introduce a class of algebras that can be used as recognisers for regular tree languages. We show that it is the only such class that forms a pseudo-variety and we prove the existence of syntactic algebras. Finally, we give a more algebraic characterisation of the algebras in our class.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
<a href="/en/project/GA17-01035S" target="_blank" >GA17-01035S: Algebraic Language Theory for Infinite Trees</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Logical Methods in Computer Science
ISSN
1860-5974
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
25
Pages from-to
1-25
UT code for WoS article
000523360600019
EID of the result in the Scopus database
2-s2.0-85081734808