All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficient Analysis of VASS Termination Complexity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00114250" target="_blank" >RIV/00216224:14330/20:00114250 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1145/3373718.3394751" target="_blank" >http://dx.doi.org/10.1145/3373718.3394751</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3373718.3394751" target="_blank" >10.1145/3373718.3394751</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficient Analysis of VASS Termination Complexity

  • Original language description

    The termination complexity of a given VASS is a function $L$ assigning to every $n$ the length of the longest nonterminating computation initiated in a configuration with all counters bounded by $n$. We show that for every VASS with demonic nondeterminism and every fixed $k$, the problem whether $L in G_k$, where $G_k$ is the $k$-th level in the Grzegorczyk hierarchy, is decidable in polynomial time. Furthermore, we show that if $L notin G_k$, then L grows at least as fast as the generator $F_k+1$ of $G_k+1$. Hence, for every terminating VASS, the growth of $L$ can be reasonably characterized by the least $k$ such that $L in G_k$. Furthermore, we consider VASS with both angelic and demonic nondeterminism, i.e., VASS games where the players aim at lowering/raising the termination time. We prove that for every fixed $k$, the problem whether $L in G_k$ for a given VASS game is NP-complete. Furthermore, if $L notin G_k$, then $L$ grows at least as fast as $F_k+1$.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/GA18-11193S" target="_blank" >GA18-11193S: Algorithms for Infinite-State Discrete Systems and Games</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    LICS '20: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science

  • ISBN

    9781450371049

  • ISSN

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    676-688

  • Publisher name

    ACM

  • Place of publication

    New York, USA

  • Event location

    Saarbrucken, Germany

  • Event date

    Jan 1, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000665014900052