Isomorphism Problem for Sd-Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00114291" target="_blank" >RIV/00216224:14330/20:00114291 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2020.4" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.MFCS.2020.4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2020.4" target="_blank" >10.4230/LIPIcs.MFCS.2020.4</a>
Alternative languages
Result language
angličtina
Original language name
Isomorphism Problem for Sd-Graphs
Original language description
An H-graph is the intersection graph of connected subgraphs of a suitable subdivision of a fixed graph H, introduced by Biró, Hujter and Tuza (1992). We focus on S_d-graphs as a special case generalizing interval graphs. A graph G is an S_d-graph iff it is the intersection graph of connected subgraphs of a subdivision of a star S_d with d rays. We give an FPT algorithm to solve the isomorphism problem for S_d-graphs with the parameter d. This solves an open problem of Chaplick, Töpfer, Voborník and Zeman (2016). In the course of our proof, we also show that the isomorphism problem of S_d-graphs is computationally at least as hard as the isomorphism problem of posets of bounded width.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA20-04567S" target="_blank" >GA20-04567S: Structure of tractable instances of hard algorithmic problems on graphs</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)
ISBN
9783959771597
ISSN
1868-8969
e-ISSN
—
Number of pages
14
Pages from-to
„4:1“-„4:14“
Publisher name
Schloss Dagstuhl - Leibniz-Zentrum fur Informatik
Place of publication
Dagstuhl, Germany
Event location
Praha
Event date
Aug 24, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—