Clique-Width of Point Configurations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00114292" target="_blank" >RIV/00216224:14330/20:00114292 - isvavai.cz</a>
Result on the web
<a href="https://arxiv.org/abs/2004.02282" target="_blank" >https://arxiv.org/abs/2004.02282</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-60440-0_5" target="_blank" >10.1007/978-3-030-60440-0_5</a>
Alternative languages
Result language
angličtina
Original language name
Clique-Width of Point Configurations
Original language description
While structural width parameters (of the input) belong to the standard toolbox of graph algorithms, it is not the usual case in computational geometry. As a case study we propose a natural extension of the structural graph parameter of clique-width to geometric point configurations represented by their order type. We study basic properties of this clique-width notion, and relate it to the monadic second-order logic of point configurations. As an application, we provide several linear FPT time algorithms for geometric point problems which are NP-hard in general, in the special case that the input point set is of bounded clique-width and the clique-width expression is also given.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA20-04567S" target="_blank" >GA20-04567S: Structure of tractable instances of hard algorithmic problems on graphs</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Graph-Theoretic Concepts in Computer Science, WG 2020
ISBN
9783030604394
ISSN
0302-9743
e-ISSN
—
Number of pages
13
Pages from-to
54-66
Publisher name
Springer, Lecture Notes in Computer Science
Place of publication
Cham
Event location
Leeds, UK
Event date
Jun 24, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—