All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

AVOIDING MULTIPLE REPETITIONS IN EUCLIDEAN SPACES

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00115528" target="_blank" >RIV/00216224:14330/20:00115528 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1137/18M1180347" target="_blank" >https://doi.org/10.1137/18M1180347</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/18M1180347" target="_blank" >10.1137/18M1180347</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    AVOIDING MULTIPLE REPETITIONS IN EUCLIDEAN SPACES

  • Original language description

    We study colorings of Euclidean spaces avoiding specified patterns on straight lines. This extends the seminal work of Thue on avoidability properties of sequences to continuous, higher dimensional structures. We prove that every space R^d has a 2-coloring such that no sequence of colors derived from collinear points separated by unit distance consists of more than r(d) identical blocks. In case of the plane we show that r(2) &lt;= 43. We also consider more general patterns and give a sufficient condition for a pattern to be avoided in the plane. This supports a general Pattern Avoidance Conjecture in Euclidean spaces. The proofs are based mainly on the probabilistic method, but additional tools are forced by the geometric nature of the problem. We also consider similar questions for general geometric graphs in the plane. In the conclusion of the paper, we pose several conjectures alluding to some famous open problems in Euclidean Ramsey Theory.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/EF16_027%2F0008360" target="_blank" >EF16_027/0008360: Postdoc@MUNI</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Discrete Mathematics

  • ISSN

    0895-4801

  • e-ISSN

  • Volume of the periodical

    34

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    40-52

  • UT code for WoS article

    000546886700002

  • EID of the result in the Scopus database

    2-s2.0-85079738314