All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Testing the role of metadata in metaphor identification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00116301" target="_blank" >RIV/00216224:14330/20:00116301 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.18653/v1/2020.figlang-1.35" target="_blank" >http://dx.doi.org/10.18653/v1/2020.figlang-1.35</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/2020.figlang-1.35" target="_blank" >10.18653/v1/2020.figlang-1.35</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Testing the role of metadata in metaphor identification

  • Original language description

    This paper describes the adaptation and application of a neural network system for the automatic detection of metaphors. The LSTM BiRNN system participated in the shared task of metaphor identification that was part of the Second Workshop of Figurative Language Processing (FigLang2020) held at the Annual Conference of the Association for Computational Linguistics (ACL2020). The particular focus of our approach is on the potential influence that the metadata given in the ETS Corpus of Non-Native Written English might have on the automatic detection of metaphors in this dataset. The article first discusses the annotated ETS learner data, highlighting some of its peculiarities and inherent biases of metaphor use. A series of evaluations follow in order to test whether specific metadata influence the system performance in the task of automatic metaphor identification. The system is available under the APLv2 open-source license.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the Second Workshop on Figurative Language Processing (FigLang2020)

  • ISBN

    9781952148125

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    256-263

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Stroudsburg, PA, USA

  • Event location

    Stroudsburg, PA, USA

  • Event date

    Jan 1, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000563422200035