Testing the role of metadata in metaphor identification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00116301" target="_blank" >RIV/00216224:14330/20:00116301 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.18653/v1/2020.figlang-1.35" target="_blank" >http://dx.doi.org/10.18653/v1/2020.figlang-1.35</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2020.figlang-1.35" target="_blank" >10.18653/v1/2020.figlang-1.35</a>
Alternative languages
Result language
angličtina
Original language name
Testing the role of metadata in metaphor identification
Original language description
This paper describes the adaptation and application of a neural network system for the automatic detection of metaphors. The LSTM BiRNN system participated in the shared task of metaphor identification that was part of the Second Workshop of Figurative Language Processing (FigLang2020) held at the Annual Conference of the Association for Computational Linguistics (ACL2020). The particular focus of our approach is on the potential influence that the metadata given in the ETS Corpus of Non-Native Written English might have on the automatic detection of metaphors in this dataset. The article first discusses the annotated ETS learner data, highlighting some of its peculiarities and inherent biases of metaphor use. A series of evaluations follow in order to test whether specific metadata influence the system performance in the task of automatic metaphor identification. The system is available under the APLv2 open-source license.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Second Workshop on Figurative Language Processing (FigLang2020)
ISBN
9781952148125
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
256-263
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg, PA, USA
Event location
Stroudsburg, PA, USA
Event date
Jan 1, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000563422200035