All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Removing Spam from Web Corpora Through Supervised Learning and Semi-manual Classification of Web Sites

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00117841" target="_blank" >RIV/00216224:14330/20:00117841 - isvavai.cz</a>

  • Result on the web

    <a href="https://nlp.fi.muni.cz/raslan/raslan20.pdf#page=121" target="_blank" >https://nlp.fi.muni.cz/raslan/raslan20.pdf#page=121</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Removing Spam from Web Corpora Through Supervised Learning and Semi-manual Classification of Web Sites

  • Original language description

    Internet spam is a major issue hindering the usefulness of web corpora. Unlike traditional text corpora collected from trustworthy sources, the content of web based corpora has to be cleaned. In this paper, two experiments of non-text removal based on supervised learning are presented. First, an improvement of corpus based language analyses of selected words achieved by a supervised classifier is shown on an English web corpus. Then, a semi-manual approach of obtaining samples of non-text web pages in Estonian is introduced. This strategy makes the supervised learning process more efficient. The result spam classifiers are tuned for high recall at the cost of precision to remove as much non-text as possible. The evaluation shows the classifiers reached the recall of 71 % and 97 % for English and Estonian web corpus, respectively. A technique for avoiding spammed web sites by measuring the distance of web pages from trustworthy sites is studied too.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LM2018101" target="_blank" >LM2018101: Digital Research Infrastructure for the Language Technologies, Arts and Humanities</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the Fourteenth Workshop on Recent Advances in Slavonic Natural Language Processing, RASLAN 2020

  • ISBN

    9788026316008

  • ISSN

    2336-4289

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    113-123

  • Publisher name

    Tribun 2020

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Jan 1, 2020

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article