All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A formula for disaster: a unified approach to elliptic curve special-point-based attacks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00119154" target="_blank" >RIV/00216224:14330/21:00119154 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-92062-3_5" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-92062-3_5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-92062-3_5" target="_blank" >10.1007/978-3-030-92062-3_5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A formula for disaster: a unified approach to elliptic curve special-point-based attacks

  • Original language description

    The Refined Power Analysis, Zero-Value Point, and Exceptional Procedure attacks introduced side-channel attack techniques against specific cases of elliptic curve cryptography. The three attacks recover bits of a static ECDH key adaptively, collecting information on whether a certain multiple of the input point was computed. We unify and generalize these attacks in a common framework and solve the corresponding problem for a broader class of inputs. We also introduce a version of the attack against windowed scalar multiplication methods, recovering the full scalar instead of just a part of it. Finally, we systematically analyze elliptic curve point addition formulas from the Explicit-Formulas Database, classify all non-trivial exceptional points, and find them in new formulas. These results indicate the usefulness of our tooling for unrolling formulas and finding special points, which might be of independent research interest.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/GA20-03426S" target="_blank" >GA20-03426S: Examining and improving security of elliptic curve cryptography</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Cryptology – ASIACRYPT 2021

  • ISBN

    9783030920616

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    30

  • Pages from-to

    130-159

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Singapore

  • Event date

    Jan 1, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000926634200005