All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Data-driven Learned Metric Index: an Unsupervised Approach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00119191" target="_blank" >RIV/00216224:14330/21:00119191 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-89657-7_7" target="_blank" >http://dx.doi.org/10.1007/978-3-030-89657-7_7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-89657-7_7" target="_blank" >10.1007/978-3-030-89657-7_7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Data-driven Learned Metric Index: an Unsupervised Approach

  • Original language description

    Metric indexes are traditionally used for organizing unstructured or complex data to speed up similarity queries. The most widely-used indexes cluster data or divide space using hyper-planes. While searching, the mutual distances between objects and the metric properties allow for the pruning of branches with irrelevant data -- this is usually implemented by utilizing selected anchor objects called pivots. Recently, we have introduced an alternative to this approach called Lear-ned Metric Index. In this method, a series of machine learning models substitute decisions performed on pivots -- the query evaluation is then determined by the predictions of these models. This technique relies upon a traditional metric index as a template for its own structure -- this dependence on a pre-existing index and the related overhead is the main drawback of the approach. In this paper, we propose a data-driven variant of the Learned Metric Index, which organizes the data using their descriptors directly, thus eliminating the need for a template. The proposed learned index shows significant gains in performance over its earlier version, as well as the established indexing structure M-index.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/GA19-02033S" target="_blank" >GA19-02033S: Searching, Mining, and Annotating Human Motion Streams</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    14th International Conference on Similarity Search and Applications (SISAP 2021)

  • ISBN

    9783030896560

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    81-94

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Dortmund, Germany

  • Event date

    Jan 1, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000722252200007