Data-driven Learned Metric Index: an Unsupervised Approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00119191" target="_blank" >RIV/00216224:14330/21:00119191 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-89657-7_7" target="_blank" >http://dx.doi.org/10.1007/978-3-030-89657-7_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-89657-7_7" target="_blank" >10.1007/978-3-030-89657-7_7</a>
Alternative languages
Result language
angličtina
Original language name
Data-driven Learned Metric Index: an Unsupervised Approach
Original language description
Metric indexes are traditionally used for organizing unstructured or complex data to speed up similarity queries. The most widely-used indexes cluster data or divide space using hyper-planes. While searching, the mutual distances between objects and the metric properties allow for the pruning of branches with irrelevant data -- this is usually implemented by utilizing selected anchor objects called pivots. Recently, we have introduced an alternative to this approach called Lear-ned Metric Index. In this method, a series of machine learning models substitute decisions performed on pivots -- the query evaluation is then determined by the predictions of these models. This technique relies upon a traditional metric index as a template for its own structure -- this dependence on a pre-existing index and the related overhead is the main drawback of the approach. In this paper, we propose a data-driven variant of the Learned Metric Index, which organizes the data using their descriptors directly, thus eliminating the need for a template. The proposed learned index shows significant gains in performance over its earlier version, as well as the established indexing structure M-index.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
<a href="/en/project/GA19-02033S" target="_blank" >GA19-02033S: Searching, Mining, and Annotating Human Motion Streams</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
14th International Conference on Similarity Search and Applications (SISAP 2021)
ISBN
9783030896560
ISSN
0302-9743
e-ISSN
—
Number of pages
14
Pages from-to
81-94
Publisher name
Springer
Place of publication
Cham
Event location
Dortmund, Germany
Event date
Jan 1, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000722252200007