On Lexicographic Proof Rules for Probabilistic Termination
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00119268" target="_blank" >RIV/00216224:14330/21:00119268 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-90870-6_33" target="_blank" >http://dx.doi.org/10.1007/978-3-030-90870-6_33</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-90870-6_33" target="_blank" >10.1007/978-3-030-90870-6_33</a>
Alternative languages
Result language
angličtina
Original language name
On Lexicographic Proof Rules for Probabilistic Termination
Original language description
We consider the almost-sure (a.s.) termination problem for probabilistic programs, which are a stochastic extension of classical imperative programs. Lexicographic ranking functions provide a sound and practical approach for termination of non-probabilistic programs, and their extension to probabilistic programs is achieved via lexicographic ranking supermartingales (LexRSMs). However, LexRSMs introduced in the previous work have a limitation that impedes their automation: all of their components have to be non-negative in all reachable states. This might result in LexRSM not existing even for simple terminating programs. Our contributions are twofold: First, we introduce a generalization of LexRSMs which allows for some components to be negative. This standard feature of non-probabilistic termination proofs was hitherto not known to be sound in the probabilistic setting, as the soundness proof requires a careful analysis of the underlying stochastic process. Second, we present polynomial-time algorithms using our generalized LexRSMs for proving a.s. termination in broad classes of linear-arithmetic programs.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GJ19-15134Y" target="_blank" >GJ19-15134Y: Verification and Analysis of Probabilistic Programs</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
24th International Symposium on Formal Methods, FM 2021
ISBN
9783030908690
ISSN
0302-9743
e-ISSN
—
Number of pages
21
Pages from-to
619-639
Publisher name
Springer
Place of publication
Cham, Switzerland
Event location
online
Event date
Jan 1, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000758218600033