All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Towards Domain Robustness of Neural Language Models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00123248" target="_blank" >RIV/00216224:14330/21:00123248 - isvavai.cz</a>

  • Result on the web

    <a href="https://nlp.fi.muni.cz/raslan/raslan21.pdf#page=99" target="_blank" >https://nlp.fi.muni.cz/raslan/raslan21.pdf#page=99</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Towards Domain Robustness of Neural Language Models

  • Original language description

    This work summarises recent progress in generalization evaluation and training of deep neural networks, categorized in data-centric and model-centric overviews. Grounded in the results of the referenced work, we propose three future directions towards reaching higher robustness of language models to an unknown domain or its adaptation to an existing domain of interest. In the example propositions that practically complement each of the directions, we introduce novel ideas of a) dynamic objective selection, b) language modeling respecting the token similarities to the ground truth and c) a framework of additive component of the loss utilizing the well-performing generalization measures.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Recent Advances in Slavonic Natural Language Processing (RASLAN 2021)

  • ISBN

    9788026316701

  • ISSN

    2336-4289

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    91-103

  • Publisher name

    Tribun EU

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Jan 1, 2021

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article