Introducing a Gold Standard Corpus from Young Multilinguals for the Evaluation of Automatic UD-PoS Taggers for Italian
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00125291" target="_blank" >RIV/00216224:14330/21:00125291 - isvavai.cz</a>
Result on the web
<a href="http://ceur-ws.org/Vol-3033/paper13.pdf" target="_blank" >http://ceur-ws.org/Vol-3033/paper13.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Introducing a Gold Standard Corpus from Young Multilinguals for the Evaluation of Automatic UD-PoS Taggers for Italian
Original language description
Part-of-speech (PoS) tagging constitutes a common task in Natural Language Processing (NLP), given its widespread applicability. However, with the advance of new information technologies and language variation, the contents and methods for PoS-tagging have changed. The majority of Italian existing data for this task originate from standard texts, where language use is far from multifaceted informal real-life situations. Automatic PoS-tagging models trained with such data do not perform reliably on non-standard language, like social media content or language learners’ texts. Our aim is to provide additional training and evaluation data from language learners tagged in Universal Dependencies (UD), as well as testing current automatic PoStagging systems and evaluating their performance on such data. We use a multilingual corpus of young language learners, LEONIDE, to create a tagged gold standard for evaluating UD PoStagging performance on the Italian nonstandard language. With the 3.7 version of Stanza, a Python NLP package, we apply available automatic PoS-taggers, namely ISDT, ParTUT, POSTWITA, TWITTIRÒ and VIT, trained with both standard and non-standard data, on our dataset. Our results show that the above taggers, trained on non-standard data or multilingual Treebanks, can achieve up to 95% of accuracy on multilingual learner data, if combined.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
8th Italian Conference on Computational Linguistics, CLiC-it 2021
ISBN
—
ISSN
1613-0073
e-ISSN
—
Number of pages
7
Pages from-to
1-7
Publisher name
CEUR Workshop Proceedings
Place of publication
Milan, Italy
Event location
Milan, Italy
Event date
Jan 1, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—