Game Achievement Analysis: Process Mining Approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00124994" target="_blank" >RIV/00216224:14330/22:00124994 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-030-95408-6_6" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-95408-6_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-95408-6_6" target="_blank" >10.1007/978-3-030-95408-6_6</a>
Alternative languages
Result language
angličtina
Original language name
Game Achievement Analysis: Process Mining Approach
Original language description
Data-oriented techniques are currently standardly used in the video game domain, providing an interesting insight into the players’ behaviour. However, the game can be seen as a set of steps that are performed for its completion. Therefore, these steps form a process. Process mining is a discipline with a focus on process analysis which can help to bring additional insights to the analysts. Hence this work explores the potential of a process-oriented approach in this context. We chose the game achievement log as the dataset as it contains valuable information about the player’s steps in the game. Furthermore, it is publicly available, and therefore, anyone, not only game developers, can perform the process analysis. The dataset and the analysis source code used in this work were made publicly available.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advanced Data Mining and Applications
ISBN
9783030954079
ISSN
0302-9743
e-ISSN
—
Number of pages
15
Pages from-to
68-82
Publisher name
Springer International Publishing
Place of publication
Cham
Event location
Sydney, NSW, Australia
Event date
Jan 1, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000754476700006