All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Data-dependent Metric Filtering

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00125539" target="_blank" >RIV/00216224:14330/22:00125539 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0306437921001666" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0306437921001666</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.is.2021.101980" target="_blank" >10.1016/j.is.2021.101980</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Data-dependent Metric Filtering

  • Original language description

    Filtering is a fundamental strategy of metric similarity indexes to minimise the number of computed distances. Given a triplet of objects for which distances of two pairs are known, the lower and upper bounds on the third distance can be determined using the triangle inequality property. Obviously, tightness of the bounds is crucial for efficiency reasons — the more precise the estimation, the more distance computations can be avoided, and the more efficient the search is. We show that it is not necessary to consider arbitrary angles in triangles formed by pairwise distances of three objects, as specific range of possible angles is data dependent. When considering realistic ranges of angles, the bounds on distances can be much more tight and filtering much more effective. We formalise the problem of the data dependent estimation of bounds on distances and deeply analyse limited angles in triangles of distances. We justify the potential of the data dependent metric filtering both, analytically and experimentally, executing many distance estimations on several real-life datasets.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Information systems

  • ISSN

    0306-4379

  • e-ISSN

  • Volume of the periodical

    108

  • Issue of the periodical within the volume

    12.5.2022

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    21

  • Pages from-to

    „101980“

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85122239890