Data-dependent Metric Filtering
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00125539" target="_blank" >RIV/00216224:14330/22:00125539 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0306437921001666" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0306437921001666</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.is.2021.101980" target="_blank" >10.1016/j.is.2021.101980</a>
Alternative languages
Result language
angličtina
Original language name
Data-dependent Metric Filtering
Original language description
Filtering is a fundamental strategy of metric similarity indexes to minimise the number of computed distances. Given a triplet of objects for which distances of two pairs are known, the lower and upper bounds on the third distance can be determined using the triangle inequality property. Obviously, tightness of the bounds is crucial for efficiency reasons — the more precise the estimation, the more distance computations can be avoided, and the more efficient the search is. We show that it is not necessary to consider arbitrary angles in triangles formed by pairwise distances of three objects, as specific range of possible angles is data dependent. When considering realistic ranges of angles, the bounds on distances can be much more tight and filtering much more effective. We formalise the problem of the data dependent estimation of bounds on distances and deeply analyse limited angles in triangles of distances. We justify the potential of the data dependent metric filtering both, analytically and experimentally, executing many distance estimations on several real-life datasets.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
<a href="/en/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Information systems
ISSN
0306-4379
e-ISSN
—
Volume of the periodical
108
Issue of the periodical within the volume
12.5.2022
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
„101980“
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85122239890