Combining Sparse and Dense Information Retrieval: Soft Vector Space Model and MathBERTa at ARQMath-3 Task 1 (Answer Retrieval)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00126431" target="_blank" >RIV/00216224:14330/22:00126431 - isvavai.cz</a>
Result on the web
<a href="http://ceur-ws.org/Vol-3180/paper-06.pdf" target="_blank" >http://ceur-ws.org/Vol-3180/paper-06.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Combining Sparse and Dense Information Retrieval: Soft Vector Space Model and MathBERTa at ARQMath-3 Task 1 (Answer Retrieval)
Original language description
Sparse retrieval techniques can detect exact matches, but are inadequate for mathematical texts, where the same information can be expressed as either text or math. The soft vector space model has been shown to improve sparse retrieval on semantic text similarity, text classification, and machine translation evaluation tasks, but it has not yet been properly evaluated on math information retrieval. In our work, we compare the soft vector space model against standard sparse retrieval baselines and state-of-the-art math information retrieval systems from Task 1 (Answer Retrieval) of the ARQMath-3 lab. We evaluate the impact of different math representations, different notions of similarity between key words and math symbols ranging from Levenshtein distances to deep neural language models, and different ways of combining text and math. We show that using the soft vector space model consistently improves effectiveness compared to using standard sparse retrieval techniques. We also show that the Tangent-L math representation achieves better effectiveness than LaTeX, and that modeling text and math separately using two models improves effectiveness compared to jointly modeling text and math using a single model. Lastly, we show that different math representations and different ways of combining text and math benefit from different notions of similarity between tokens. Our best system achieves NDCG' of 0.251 on Task 1 of the ARQMath-3 lab.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum
ISBN
—
ISSN
1613-0073
e-ISSN
—
Number of pages
15
Pages from-to
104-118
Publisher name
CEUR-WS
Place of publication
Bologna
Event location
Bologna
Event date
Sep 5, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—