All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Parameterised Partially-Predrawn Crossing Number

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00129306" target="_blank" >RIV/00216224:14330/22:00129306 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2022.46" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.SoCG.2022.46</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2022.46" target="_blank" >10.4230/LIPIcs.SoCG.2022.46</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Parameterised Partially-Predrawn Crossing Number

  • Original language description

    Inspired by the increasingly popular research on extending partial graph drawings, we propose a new perspective on the traditional and arguably most important geometric graph parameter, the crossing number. Specifically, we define the partially predrawn crossing number to be the smallest number of crossings in any drawing of a graph, part of which is prescribed on the input (not counting the prescribed crossings). Our main result - an FPT-algorithm to compute the partially predrawn crossing number - combines advanced ideas from research on the classical crossing number and so called partial planarity in a very natural but intricate way. Not only do our techniques generalise the known FPT-algorithm by Grohe for computing the standard crossing number, they also allow us to substantially improve a number of recent parameterised results for various drawing extension problems.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA20-04567S" target="_blank" >GA20-04567S: Structure of tractable instances of hard algorithmic problems on graphs</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    38th International Symposium on Computational Geometry (SoCG 2022)

  • ISBN

    9783959772273

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    „46:1“-„46:15“

  • Publisher name

    Schloss Dagstuhl

  • Place of publication

    Dagstuhl, Germany

  • Event location

    Berlin, Germany

  • Event date

    Jun 7, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article