Parameterised Partially-Predrawn Crossing Number
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00129306" target="_blank" >RIV/00216224:14330/22:00129306 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2022.46" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.SoCG.2022.46</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2022.46" target="_blank" >10.4230/LIPIcs.SoCG.2022.46</a>
Alternative languages
Result language
angličtina
Original language name
Parameterised Partially-Predrawn Crossing Number
Original language description
Inspired by the increasingly popular research on extending partial graph drawings, we propose a new perspective on the traditional and arguably most important geometric graph parameter, the crossing number. Specifically, we define the partially predrawn crossing number to be the smallest number of crossings in any drawing of a graph, part of which is prescribed on the input (not counting the prescribed crossings). Our main result - an FPT-algorithm to compute the partially predrawn crossing number - combines advanced ideas from research on the classical crossing number and so called partial planarity in a very natural but intricate way. Not only do our techniques generalise the known FPT-algorithm by Grohe for computing the standard crossing number, they also allow us to substantially improve a number of recent parameterised results for various drawing extension problems.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA20-04567S" target="_blank" >GA20-04567S: Structure of tractable instances of hard algorithmic problems on graphs</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
38th International Symposium on Computational Geometry (SoCG 2022)
ISBN
9783959772273
ISSN
1868-8969
e-ISSN
—
Number of pages
15
Pages from-to
„46:1“-„46:15“
Publisher name
Schloss Dagstuhl
Place of publication
Dagstuhl, Germany
Event location
Berlin, Germany
Event date
Jun 7, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—