A taxonomy of bias-causing ambiguities in machine translation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00139270" target="_blank" >RIV/00216224:14330/22:00139270 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.18653/v1/2022.gebnlp-1.18" target="_blank" >http://dx.doi.org/10.18653/v1/2022.gebnlp-1.18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2022.gebnlp-1.18" target="_blank" >10.18653/v1/2022.gebnlp-1.18</a>
Alternative languages
Result language
angličtina
Original language name
A taxonomy of bias-causing ambiguities in machine translation
Original language description
This paper introduces a taxonomy of phenomena which cause bias in machine translation, covering gender bias (people being male and/or female), number bias (singular you versus plural you) and formality bias (informal you versus formal you). Our taxonomy is a formalism for describing situations in machine translation when the source text leaves some of these properties unspecified (eg. does not say whether doctor is male or female) but the target language requires the property to be specified (eg. because it does not have a gender-neutral word for doctor). The formalism described here is used internally by Fairslator, a web-based tool for detecting and correcting bias in the output of any machine translator.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
4th Workshop on Gender Bias in Natural Language Processing, GeBNLP 2022
ISBN
9781955917681
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
168-173
Publisher name
Association for Computational Linguistics (ACL)
Place of publication
Seattle
Event location
Seattle
Event date
Jan 1, 2022
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—