All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A taxonomy of bias-causing ambiguities in machine translation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00139270" target="_blank" >RIV/00216224:14330/22:00139270 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.18653/v1/2022.gebnlp-1.18" target="_blank" >http://dx.doi.org/10.18653/v1/2022.gebnlp-1.18</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/2022.gebnlp-1.18" target="_blank" >10.18653/v1/2022.gebnlp-1.18</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A taxonomy of bias-causing ambiguities in machine translation

  • Original language description

    This paper introduces a taxonomy of phenomena which cause bias in machine translation, covering gender bias (people being male and/or female), number bias (singular you versus plural you) and formality bias (informal you versus formal you). Our taxonomy is a formalism for describing situations in machine translation when the source text leaves some of these properties unspecified (eg. does not say whether doctor is male or female) but the target language requires the property to be specified (eg. because it does not have a gender-neutral word for doctor). The formalism described here is used internally by Fairslator, a web-based tool for detecting and correcting bias in the output of any machine translator.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    4th Workshop on Gender Bias in Natural Language Processing, GeBNLP 2022

  • ISBN

    9781955917681

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    168-173

  • Publisher name

    Association for Computational Linguistics (ACL)

  • Place of publication

    Seattle

  • Event location

    Seattle

  • Event date

    Jan 1, 2022

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article