All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Source Code Metrics for Software Defects Prediction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00130144" target="_blank" >RIV/00216224:14330/23:00130144 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1145/3555776.3577809" target="_blank" >http://dx.doi.org/10.1145/3555776.3577809</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3555776.3577809" target="_blank" >10.1145/3555776.3577809</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Source Code Metrics for Software Defects Prediction

  • Original language description

    In current research, there are contrasting results about the applicability of software source code metrics as features for defect prediction models. The goal of the paper is to evaluate the adoption of software metrics in models for software defect prediction, identifying the impact of individual source code metrics. With an empirical study on 275 release versions of 39 Java projects mined from GitHub, we compute 12 software metrics and collect software defect information. We train and compare three defect classification models. The results across all projects indicate that Decision Tree (DT) and Random Forest (RF) classifiers show the best results. Among the highest-performing individual metrics are NOC, NPA, DIT, and LCOM5. While other metrics, such as CBO, do not bring significant improvements to the models.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    The 38th ACM/SIGAPP Symposium on Applied Computing (SAC '23)

  • ISBN

    9781450395175

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    1469-1472

  • Publisher name

    Association for Computing Machinery (ACM)

  • Place of publication

    Not specified

  • Event location

    Tallinn, Estonia

  • Event date

    Mar 27, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001124308100207