All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Can In-context Learners Learn a Reasoning Concept from Demonstrations?

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00131346" target="_blank" >RIV/00216224:14330/23:00131346 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Can In-context Learners Learn a Reasoning Concept from Demonstrations?

  • Original language description

    Language models exhibit an emergent ability to learn a new task from a small number of input-output demonstrations. However, recent work shows that in-context learners largely rely on their pre-trained knowledge, such as the sentiment of the labels, instead of learning new associations from the input. We argue that the commonly-used few-shot evaluation using a random selection of in-context demonstrations can not disentangle models' reliance on such biases, as most of the randomly-selected demonstrations do not present relations informative for prediction beyond exposing the task's input-output distribution. Therefore, to evaluate models' in-context learning ability independent of models' memory, we introduce a Concept-sharing few-shot learning method choosing the demonstrations that share an underlying concept with the predicted sample. We extract a set of such concepts from available human explanations and measure how much models can benefit from presenting these concepts in few-shot demonstrations. We find that most of the recent in-context learners can not consistently benefit from the demonstrated concepts, irrespective of the model size. However, we note that T0 models are more sensitive to exhibited concepts, benefiting from concept-sharing demonstrations in 7 out of 8 evaluation scenarios.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 1st Workshop on Natural Language Reasoning and Structured Explanations (NLRSE)

  • ISBN

    9781959429944

  • ISSN

    0736-587X

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    107-115

  • Publisher name

    The Association for Computational Linguistics

  • Place of publication

    Toronto, Canada

  • Event location

    Toronto, Canada

  • Event date

    Jan 1, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article