Document Visual Question Answering with CIVQA: Czech Invoice Visual Question Answering Dataset
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00132396" target="_blank" >RIV/00216224:14330/23:00132396 - isvavai.cz</a>
Result on the web
<a href="https://www.fi.muni.cz/usr/sojka/papers/scavnicka-stefanik-sojka-raslan-2023.pdf" target="_blank" >https://www.fi.muni.cz/usr/sojka/papers/scavnicka-stefanik-sojka-raslan-2023.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Document Visual Question Answering with CIVQA: Czech Invoice Visual Question Answering Dataset
Original language description
Applications of document processing become increasingly popular across multiple industries, resulting in a growing amount of research on the applications of artificial intelligence in document processing (Document AI). This paper focuses on a subtask of Document AI, Document Visual Question Answering (DVQA), recently getting well-deserved attention thanks to its universality. However, the limited availability of data sources for languages outside English restrains the applicability of DVQA in non-English languages. <p> For this reason, we created the CIVQA (Czech Inovice Visual Question Answering) dataset covering 15 entities of financial documents, consisting of more than 6,000 invoices in the Czech language. </p> <p> We used the CIVQA dataset to create the first-of-its-kind DVQA models specifically tailored for applications to Czech documents. Striving to create DVQA models able to generalize, we specifically evaluate our models on the entities not covered in the training mix and find that multilingual LayoutLM models are able to respond to questions about previously unseen entities substantially more accurately than other models. </p> <p> The CIVQA dataset and experiment observations offer new opportunities for Document AI in the Czech Republic, with potential applications in research and commercial fields.</p>
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EG21_374%2F0026711" target="_blank" >EG21_374/0026711: Smart back office</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Recent Advances in Slavonic Natural Language Processing (RASLAN 2023)
ISBN
9788026317937
ISSN
2336-4289
e-ISSN
—
Number of pages
12
Pages from-to
23-34
Publisher name
Tribun EU
Place of publication
Brno
Event location
Kouty nad Desnou
Event date
Dec 8, 2023
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—