All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Document Visual Question Answering with CIVQA: Czech Invoice Visual Question Answering Dataset

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00132396" target="_blank" >RIV/00216224:14330/23:00132396 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.fi.muni.cz/usr/sojka/papers/scavnicka-stefanik-sojka-raslan-2023.pdf" target="_blank" >https://www.fi.muni.cz/usr/sojka/papers/scavnicka-stefanik-sojka-raslan-2023.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Document Visual Question Answering with CIVQA: Czech Invoice Visual Question Answering Dataset

  • Original language description

    Applications of document processing become increasingly popular across multiple industries, resulting in a growing amount of research on the applications of artificial intelligence in document processing (Document AI). This paper focuses on a subtask of Document AI, Document Visual Question Answering (DVQA), recently getting well-deserved attention thanks to its universality. However, the limited availability of data sources for languages outside English restrains the applicability of DVQA in non-English languages. <p> For this reason, we created the CIVQA (Czech Inovice Visual Question Answering) dataset covering 15 entities of financial documents, consisting of more than 6,000 invoices in the Czech language. </p> <p> We used the CIVQA dataset to create the first-of-its-kind DVQA models specifically tailored for applications to Czech documents. Striving to create DVQA models able to generalize, we specifically evaluate our models on the entities not covered in the training mix and find that multilingual LayoutLM models are able to respond to questions about previously unseen entities substantially more accurately than other models. </p> <p> The CIVQA dataset and experiment observations offer new opportunities for Document AI in the Czech Republic, with potential applications in research and commercial fields.</p>

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EG21_374%2F0026711" target="_blank" >EG21_374/0026711: Smart back office</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Recent Advances in Slavonic Natural Language Processing (RASLAN 2023)

  • ISBN

    9788026317937

  • ISSN

    2336-4289

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    23-34

  • Publisher name

    Tribun EU

  • Place of publication

    Brno

  • Event location

    Kouty nad Desnou

  • Event date

    Dec 8, 2023

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article