Unsupervised extraction, classification and visualization of clinical note segments using the MIMIC-III dataset
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00133337" target="_blank" >RIV/00216224:14330/23:00133337 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/BIBM58861.2023.10385342" target="_blank" >http://dx.doi.org/10.1109/BIBM58861.2023.10385342</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/BIBM58861.2023.10385342" target="_blank" >10.1109/BIBM58861.2023.10385342</a>
Alternative languages
Result language
angličtina
Original language name
Unsupervised extraction, classification and visualization of clinical note segments using the MIMIC-III dataset
Original language description
This paper presents a text-mining approach to extracting and organizing segments from unstructured clinical notes in an unsupervised way. Our work is motivated by the real challenge of poor semantic integration between clinical notes produced by different doctors, departments, or hospitals. This can lead to clinicians overlooking important information, especially for patients with long and varied medical histories. This work extends a previous approach developed for Czech breast cancer patients and validates it on the publicly accessible MIMIC-III English dataset, demonstrating its universal and language-independent applicability. Our work is a stepping stone to a broad array of downstream tasks, such as summarizing or integrating patient records, extracting structured information, or computing patient embeddings. Additionally, the paper presents a clustering analysis of the latent space of note segment types, using hierarchical clustering and an interactive treemap visualization. The presented results demonstrate that this approach generalizes well for MIMIC and English.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
ISBN
9798350337488
ISSN
2156-1133
e-ISSN
—
Number of pages
7
Pages from-to
4172-4178
Publisher name
IEEE
Place of publication
Istanbul
Event location
Istanbul
Event date
Jan 1, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—