All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Unsupervised extraction, classification and visualization of clinical note segments using the MIMIC-III dataset

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00133337" target="_blank" >RIV/00216224:14330/23:00133337 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/BIBM58861.2023.10385342" target="_blank" >http://dx.doi.org/10.1109/BIBM58861.2023.10385342</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/BIBM58861.2023.10385342" target="_blank" >10.1109/BIBM58861.2023.10385342</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Unsupervised extraction, classification and visualization of clinical note segments using the MIMIC-III dataset

  • Original language description

    This paper presents a text-mining approach to extracting and organizing segments from unstructured clinical notes in an unsupervised way. Our work is motivated by the real challenge of poor semantic integration between clinical notes produced by different doctors, departments, or hospitals. This can lead to clinicians overlooking important information, especially for patients with long and varied medical histories. This work extends a previous approach developed for Czech breast cancer patients and validates it on the publicly accessible MIMIC-III English dataset, demonstrating its universal and language-independent applicability. Our work is a stepping stone to a broad array of downstream tasks, such as summarizing or integrating patient records, extracting structured information, or computing patient embeddings. Additionally, the paper presents a clustering analysis of the latent space of note segment types, using hierarchical clustering and an interactive treemap visualization. The presented results demonstrate that this approach generalizes well for MIMIC and English.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

  • ISBN

    9798350337488

  • ISSN

    2156-1133

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    4172-4178

  • Publisher name

    IEEE

  • Place of publication

    Istanbul

  • Event location

    Istanbul

  • Event date

    Jan 1, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article