All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Machine Learning Survival Models for Relapse Prediction in a Early Stage Lung Cancer Patient

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00133943" target="_blank" >RIV/00216224:14330/23:00133943 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/IJCNN54540.2023.10191078" target="_blank" >http://dx.doi.org/10.1109/IJCNN54540.2023.10191078</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IJCNN54540.2023.10191078" target="_blank" >10.1109/IJCNN54540.2023.10191078</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Machine Learning Survival Models for Relapse Prediction in a Early Stage Lung Cancer Patient

  • Original language description

    Lung cancer is one of the leading health complications causing high mortality worldwide. The relapsing behavior of medically treated early-stage lung cancer makes this disease even more complicated. Thus predicting such relapse using a data-centric approach provides a complementary perspective for clinicians to understand the disease. In this preliminary work, we explored off-the-shelf survival models to predict the relapse of early-stage lung cancer patients. We analyzed the survival models on a cohort of 1348 early-stage non-small cell lung cancer (NSCLC) patients in different timestamps. Using the prediction explanation model SHAP (SHapley Additive exPlanations), we further explained the best-performing survival model's predictions. Our explainable predictive model is a potential tool for oncologists that address an unmet clinical need for post-treatment patient stratification based on the relapse hazard.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN

  • ISBN

    9781665488679

  • ISSN

    2161-4393

  • e-ISSN

    2161-4407

  • Number of pages

    8

  • Pages from-to

    1-8

  • Publisher name

    IEEE

  • Place of publication

    Broadbeach, Australia

  • Event location

    Broadbeach, Australia

  • Event date

    Jan 1, 2023

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article

    001046198700044