THE CLASS OF ALL 3-VALUED NATURAL CONDITIONAL VARIANTS OF RM3 THAT ARE PLUMWOOD ALGEBRAS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00133946" target="_blank" >RIV/00216224:14330/23:00133946 - isvavai.cz</a>
Result on the web
<a href="https://ojs.victoria.ac.nz/ajl/article/view/8285" target="_blank" >https://ojs.victoria.ac.nz/ajl/article/view/8285</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
THE CLASS OF ALL 3-VALUED NATURAL CONDITIONAL VARIANTS OF RM3 THAT ARE PLUMWOOD ALGEBRAS
Original language description
Valerie Plumwood introduced in Some false laws of logic [15] a series of arguments on how the rules Exported Syllogism, Disjunctive Syllogism, Commutation, and Exportation are not acceptable. Based on this we define the class of Plumwood algebras, logical matrices that do not verify any of these theses. Afterwards we provide conditional variants of the characteristic matrix of the logic RM3 that are also Plumwood algebras. These matrices are given an axiomatization Semantics. Finally we provide results of Soundness and Completeness in the strong sense for each of the defined variants.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
AUSTRALASIAN JOURNAL OF LOGIC
ISSN
1448-5052
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
2
Country of publishing house
NZ - NEW ZEALAND
Number of pages
31
Pages from-to
188-218
UT code for WoS article
001032544500005
EID of the result in the Scopus database
—