All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Twin-Width and Transductions of Proper k-Mixed-Thin Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00135529" target="_blank" >RIV/00216224:14330/24:00135529 - isvavai.cz</a>

  • Result on the web

    <a href="https://arxiv.org/abs/2202.12536" target="_blank" >https://arxiv.org/abs/2202.12536</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.disc.2024.113876" target="_blank" >10.1016/j.disc.2024.113876</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Twin-Width and Transductions of Proper k-Mixed-Thin Graphs

  • Original language description

    The new graph parameter twin-width, introduced by Bonnet, Kim, Thomassé and Watrigant in 2020, allows for an FPT algorithm for testing all FO properties of graphs. This makes classes of efficiently bounded twin-width attractive from the algorithmic point of view. In particular, classes of efficiently bounded twin-width include proper interval graphs, and (as digraphs) posets of width k. Inspired by an existing generalization of interval graphs into so-called k-thin graphs, we define a new class of proper k-mixed-thin graphs which largely generalizes proper interval graphs. We prove that proper k-mixed-thin graphs have twin-width linear in k, and that a slight subclass of k-mixed-thin graphs is transduction-equivalent to posets of width such that there is a quadratic-polynomial relation between k and . In addition to that, we also give an abstract overview of the so-called red potential method which we use to prove our twin-width bounds.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/GA20-04567S" target="_blank" >GA20-04567S: Structure of tractable instances of hard algorithmic problems on graphs</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    DISCRETE MATHEMATICS

  • ISSN

    0012-365X

  • e-ISSN

    1872-681X

  • Volume of the periodical

    347

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    20

  • Pages from-to

    113876

  • UT code for WoS article

    001252097100001

  • EID of the result in the Scopus database

    2-s2.0-85182798027