Twin-Width and Transductions of Proper k-Mixed-Thin Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00135529" target="_blank" >RIV/00216224:14330/24:00135529 - isvavai.cz</a>
Result on the web
<a href="https://arxiv.org/abs/2202.12536" target="_blank" >https://arxiv.org/abs/2202.12536</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2024.113876" target="_blank" >10.1016/j.disc.2024.113876</a>
Alternative languages
Result language
angličtina
Original language name
Twin-Width and Transductions of Proper k-Mixed-Thin Graphs
Original language description
The new graph parameter twin-width, introduced by Bonnet, Kim, Thomassé and Watrigant in 2020, allows for an FPT algorithm for testing all FO properties of graphs. This makes classes of efficiently bounded twin-width attractive from the algorithmic point of view. In particular, classes of efficiently bounded twin-width include proper interval graphs, and (as digraphs) posets of width k. Inspired by an existing generalization of interval graphs into so-called k-thin graphs, we define a new class of proper k-mixed-thin graphs which largely generalizes proper interval graphs. We prove that proper k-mixed-thin graphs have twin-width linear in k, and that a slight subclass of k-mixed-thin graphs is transduction-equivalent to posets of width such that there is a quadratic-polynomial relation between k and . In addition to that, we also give an abstract overview of the so-called red potential method which we use to prove our twin-width bounds.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
<a href="/en/project/GA20-04567S" target="_blank" >GA20-04567S: Structure of tractable instances of hard algorithmic problems on graphs</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DISCRETE MATHEMATICS
ISSN
0012-365X
e-ISSN
1872-681X
Volume of the periodical
347
Issue of the periodical within the volume
8
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
20
Pages from-to
113876
UT code for WoS article
001252097100001
EID of the result in the Scopus database
2-s2.0-85182798027