All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

New Human-Annotated Dataset of Czech Health Records for Training Medical Concept Recognition Models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00136991" target="_blank" >RIV/00216224:14330/24:00136991 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-031-70563-2_9" target="_blank" >http://dx.doi.org/10.1007/978-3-031-70563-2_9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-70563-2_9" target="_blank" >10.1007/978-3-031-70563-2_9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    New Human-Annotated Dataset of Czech Health Records for Training Medical Concept Recognition Models

  • Original language description

    Following the widespread successes of leveraging recent large language models (LLMs) in various NLP tasks, this paper focuses on medical text content understanding. Adapting a foundational LLM to the medical domain requires a special kind of datasets where core medical concepts are accurately annotated. This paper addresses the need of better medical concept recognition in free-text electronic health records in low-resourced Slavic languages and introduces CSEHR, a new human-annotated dataset of Czech oncology health records. It describes the dataset inception, management, considerations, processing, and finally presents baseline concept recognition model results. XLM-RoBERTa models trained on the dataset using 5-fold cross-validation achieved an average weighted F1 score of 0.672 in exact and 0.777 in partial medical concept recognition ranging from 0.335 to 0.857 per different concept classes. This paper then describes future plans of bootstrapping larger annotated corpora from the CSEHR dataset and of making the dataset publicly available. This endeavor is unique in the realm of Slavic languages and already at this stage it represents a major step in the field of Slavic medical concept recognition.",

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/LM2023062" target="_blank" >LM2023062: Digital Research Infrastructure for Language Technologies, Arts and Humanities</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Text, Speech, and Dialogue

  • ISBN

    9783031705625

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    110-120

  • Publisher name

    Springer Nature Switzerland

  • Place of publication

    Cham

  • Event location

    Brno

  • Event date

    Jan 1, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001307840300009