All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Named Entity Linking in English-Czech Parallel Corpus

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00137343" target="_blank" >RIV/00216224:14330/24:00137343 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/book/10.1007/978-3-031-70563-2" target="_blank" >https://link.springer.com/book/10.1007/978-3-031-70563-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-70563-2_12" target="_blank" >10.1007/978-3-031-70563-2_12</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Named Entity Linking in English-Czech Parallel Corpus

  • Original language description

    We present a procedure to build relatively quickly new resources with annotated named entities and their linking to Wikidata. First, we applied state-of-the-art models for named entity recognition on a sentence-aligned parallel English-Czech corpus. We selected the most common entity classes: person, location, organization, and miscellaneous. Second, we manually checked the corpus in a suitably set annotation application. Third, we used a state-of-the-art tool for named entity linking and enhanced the ranking using sentence embeddings obtained by sentence transformers. We then checked manually whether the linking to knowledge bases was correct. As a result, we added two annotation layers to an existing parallel corpus: one with the named entities and one with links to Wikidata. The corpus contains 14,881 parallel Czech-English sentences and 3,769 links to Wikidata. The corpus can be used for training more robust named entity recognition and named entity linking models and for linguistic research of parallel news texts.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Text, Speech, and Dialogue : 27th International Conference, TSD 2024, Brno, Czech Republic, September 9–13, 2024, Proceedings, Part I

  • ISBN

    9783031705625

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    147-158

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Brno

  • Event date

    Sep 9, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001307840300012