BNClassifier: Classifying Boolean Models by Dynamic Properties
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00137599" target="_blank" >RIV/00216224:14330/24:00137599 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-71671-3_2" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-71671-3_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-71671-3_2" target="_blank" >10.1007/978-3-031-71671-3_2</a>
Alternative languages
Result language
angličtina
Original language name
BNClassifier: Classifying Boolean Models by Dynamic Properties
Original language description
Partially Specified Boolean Networks (PSBNs) represent a family of Boolean models resulting from possible interpretations of unknown update logics. Hybrid extension of CTL (HCTL) has the power to express complex dynamical phenomena, such as oscillations or stability. We present BNClassifier to classify Boolean Networks corresponding to a given PSBN according to criteria specified in HCTL. The implementation of the tool is fully symbolic (based on BDDs). The results are visualized using the machine-learning-based technology of decision trees.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
<a href="/en/project/GA22-10845S" target="_blank" >GA22-10845S: Unraveling the role of polyhydroxyalkanoates in Schlegelella thermodepolymerans – promising environmental bacterium for next generation biotechnology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computational Methods in Systems Biology
ISBN
9783031716706
ISSN
0302-9743
e-ISSN
—
Number of pages
8
Pages from-to
19-26
Publisher name
Springer
Place of publication
Cham
Event location
Pisa, Italy
Event date
Jan 1, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001333144400002