All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Local version of Vizing's theorem for multigraphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00138609" target="_blank" >RIV/00216224:14330/24:00138609 - isvavai.cz</a>

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/full/10.1002/jgt.23155" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/jgt.23155</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/jgt.23155" target="_blank" >10.1002/jgt.23155</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Local version of Vizing's theorem for multigraphs

  • Original language description

    Extending a result of Christiansen, we prove that every multigraph G = ( V , E ) $G=(V,E)$ admits a proper edge colouring ? : E ? { 1 , 2 , ? } $phi :Eto {1,2,ldots ,}$ which is local, that is, ? ( e ) ? max { d ( x ) + π ( x ) , d ( y ) + π ( y ) } $phi (e)leqslant max {d(x)+pi (x),d(y)+pi (y)}$ for every edge e $e$ with end-points x , y ? V $x,yin V$, where d ( z ) $d(z)$ (resp. π ( z ) $pi (z)$) denotes the degree of a vertex z $z$ (resp. the maximum edge multiplicity at z $z$). This is derived from a local version of the Fan Equation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    JOURNAL OF GRAPH THEORY

  • ISSN

    0364-9024

  • e-ISSN

  • Volume of the periodical

    107

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    693-701

  • UT code for WoS article

    001272545600001

  • EID of the result in the Scopus database

    2-s2.0-85198520849