stl2vec: Semantic and Interpretable Vector Representation of Temporal Logic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00139091" target="_blank" >RIV/00216224:14330/24:00139091 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3233/FAIA240638" target="_blank" >http://dx.doi.org/10.3233/FAIA240638</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/FAIA240638" target="_blank" >10.3233/FAIA240638</a>
Alternative languages
Result language
angličtina
Original language name
stl2vec: Semantic and Interpretable Vector Representation of Temporal Logic
Original language description
Integrating symbolic knowledge and data-driven learning algorithms is a longstanding challenge in Artificial Intelligence. Despite the recognized importance of this task, a notable gap exists due to the discreteness of symbolic representations and the continuous nature of machine-learning computations. One of the desired bridges between these two worlds would be to define semantically grounded vector representation (feature embedding) of logic formulae, thus enabling to perform continuous learning and optimization in the semantic space of formulae. We tackle this goal for knowledge expressed in Signal Temporal Logic (STL) and devise a method to compute continuous embeddings of formulae with several desirable properties: the embedding (i) is finite-dimensional, (ii) faithfully reflects the semantics of the formulae, (iii) does not require any learning but instead is defined from basic principles, (iv) is interpretable. Another significant contribution lies in demonstrating the efficacy of the approach in two tasks: learning model checking, where we predict the probability of requirements being satisfied in stochastic processes; and integrating the embeddings into a neuro-symbolic framework, to constrain the output of a deep-learning generative model to comply to a given logical specification.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ECAI 2024, 27th European Conference on Artificial Intelligence
ISBN
9781643685489
ISSN
0922-6389
e-ISSN
—
Number of pages
8
Pages from-to
1381-1388
Publisher name
IOS Press
Place of publication
Santiago de Compostela, Spain
Event location
Santiago de Compostela, Spain
Event date
Jan 1, 2024
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—