All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

LPGD: A General Framework for Backpropagation through Embedded Optimization Layers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00139577" target="_blank" >RIV/00216224:14330/24:00139577 - isvavai.cz</a>

  • Result on the web

    <a href="https://proceedings.mlr.press/v235/paulus24a.html" target="_blank" >https://proceedings.mlr.press/v235/paulus24a.html</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    LPGD: A General Framework for Backpropagation through Embedded Optimization Layers

  • Original language description

    Embedding parameterized optimization problems as layers into machine learning architectures serves as a powerful inductive bias. Training such architectures with stochastic gradient descent requires care, as degenerate derivatives of the embedded optimization problem often render the gradients uninformative. We propose Lagrangian Proximal Gradient Descent (LPGD), a flexible framework for training architectures with embedded optimization layers that seamlessly integrates into automatic differentiation libraries. LPGD efficiently computes meaningful replacements of the degenerate optimization layer derivatives by re-running the forward solver oracle on a perturbed input. LPGD captures various previously proposed methods as special cases, while fostering deep links to traditional optimization methods. We theoretically analyze our method and demonstrate on historical and synthetic data that LPGD converges faster than gradient descent even in a differentiable setup.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA23-06963S" target="_blank" >GA23-06963S: VESCAA: Verifiable and Efficient Synthesis of Controllers for Autonomous Agents</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of Machine Learning Research

  • ISBN

  • ISSN

    2640-3498

  • e-ISSN

  • Number of pages

    26

  • Pages from-to

    39989-40014

  • Publisher name

    ML Research Press

  • Place of publication

    Neuveden

  • Event location

    Vienna

  • Event date

    Jul 21, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article